
 

 

 
Unit- 4 

                       Process Control                
 

Process Creation 
The only way to create a new process in UNIX is to use 

the fork system call. The process which calls fork is called 
the parent process and the newly created process is called 
the child process. 

pid = fork(); 

On return of the fork system call, the two processes have identical 
user-level context except for the value of pid. pid for the parent process is 
the process ID of the child process. And pid for child process is 0. The 
process 0 is the only process which is not created via fork. 

The steps followed by the kernel for fork are: 

1. It creates a new entry in the process table. 

2. It assigns a unique ID to the newly created process. 

3. It makes a logical copy of the regions of the parent process. If a 
regions can be shared, only its reference count is incremented 
instead of making a physical copy of the region. 

4. The reference counts of file table entries and inodes of the process 
are increased. 

5. It turned the child process ID to the parent and 0 to the child. 
The kernel first checks if it has enough resources to create a new 

process. In a swapping system, it needs space either in memory or on 
disk to hold the child process; on a paging system, it has to allocate 
memory for auxiliary tables such as page tables.  

The kernel assigns a unique ID to a process. It is one greater than 
the previously assigned ID. If another process has the proposed ID 
number, the kernel attempts to assign the next higher ID number.  



 

 

 
When ID numbers reach the maximum value, assignment starts 

from 0 again. 
  
Ordinary users cannot create a process that would occupy the last 

remaining slot in the process table. On the other hand, a super user 
can create as many processes as it wants (limited by the size of the 
process table.) 

The kernel assigns parent process ID in the child slot, putting the 
child in process tree structure, and initialize various scheduling 
parameters, such as the initial priority value, initial CPU usage, and 
other timing fields.  

                 The initial state of the process is "being created". 
The kernel duplicates every region in the parent process using 
algorithm dupreg, and attaches every region to the child process using 
algorithm attachreg. In a swapping system, it copies the contents of 
regions that are not shared into a new area of main memory. 

                  The kernel copies the parent context layer 1, containing 
user saved register context and the kernel stack frame of 
the fork system call. If the implementation is one where the kernel 
stack is part of the u-area, the kernel automatically creates the child 
kernel stack when it creates the child u-area. Otherwise, the parent 
process must copy its kernel stack to a private area of memory 
associated with the child process. The kernel then creates a dummy 
context layer 2 for the child process, containing the saved register 
context for context layer 1.  

                   It sets the program counter and other registers in the saved 
register context so that it can "restore" the child context, even though it 
had never executed before, and so that the child process can recognize 
itself as the child when it runs. For instance, if the kernel code tests the 
value of register 0 to decide if the process is the parent or the child, it 
writes the appropriate value in the child saved register context in  
layer 1. 
                    When the child context is ready, the parent completes its part 
of fork by changing the child state to "ready to run (in memory)" and by 
returning the child process ID to the user. The kernel later schedules the 
child process for execution via the normal scheduling algorithm, and the 
child process "completes" its part of the fork. The context of the child 
process was set up by the parent process; to the kernel, the child process 
appears to have awakened after awaiting a resource. The child process 



 

 

executes part of the code for the fork system call, according to the 
program counter that the kernel restored from the saved register context 
in context layer 2, and returns a 0 from the system call. 
              The figure give a logical view of the parent and child processes 
and their relationship with the kernel data structures immediately after 
completion of the fork system call: 

 
                  Consider a program where a process has some global 
variables and has opened some files. After opening the files, the 
process forks a child process. In this scenario, as the data region was 
copied, both the processes have their own copies of the global variables, 
and changing a variable in one process' context will not affect the 
variable in other process' context. But as the user file descriptor entries 
of the two processes point to the same file table entry, if one  

 
process reads/writes a file, the offset in the file table will change and the 
other process will get affected, because when it tries to read/write, it will 
do it with respect to the changed offset. 
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Signals 
                 Signals inform processes of the occurrence of asynchronous 
events. Processes may send each other signals with the kill system call, or 
the kernel may send signals internally. There are 19 signals in the 
System V (Release 2) UNIX system that can be classified as follows: 

• Signals having to do with the termination of a process, send when 
a process exits or when a process invokes the signal system call 
with the death of child parameter. 

• Signals having to do with process induced exceptions such as 
when a process accesses an address outside its virtual address 
space, when it attempts to write memory that is read-only (such as 
program text), or when it executes a privileged instruction or for 
various hardware errors. 

• Signals having to do with the unrecoverable conditions during a 
system call, such as running out of system resources 
during exec after the original address space has been released 

• Signals caused by an unexpected error condition during a system 
call, such as making a nonexistent system call, writing a pipe that 
has no reader processes, or using an illegal "reference" value for 
the lseek system call. It would be more consistent to return an error 
on such system calls instead of generating a signal, but the use of 
signals to abort misbehaving processes is more pragmatic. 

• Signals originating from a process in user mode, such as when a 
process wishes to receive an alarm signal after a period of time, or 
when processes send arbitrary signals to each other with 
the kill system call. 

• Signals related to terminal interaction such as when a user hands 
up a terminal (or the "carrier" signal drops on such a line for any 
reason), or when a user presses the "break" or "delete" keys on a 
terminal keyboard. 

• Signals for tracing execution of a process. 
                    When a kernel or a process sends a signal to another process, 
a bit in the process table entry of that process is set, with respect to the 



 

 

type of signal received. If the process is asleep at an interruptible 
priority, the kernel awakens it. A process can remember different types 
of signals but it cannot remember how many times a signal of a 
particular type was received. 
                 The kernel checks for receipt of a signal when a process about 
to return from kernel mode to user mode and when it enters or leaves 
the sleep state at a suitably low scheduling priority. The kernel handles 
signals only when a process returns from kernel mode to user mode. 
This is shown in the following figure: 

 
                    If a process is running in user mode, and the kernel handles 
an interrupt that causes a signal to be sent to the process, the kernel will 
recognize and handle the signal when it returns from the interrupt. 
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Thus, a process never executes in user mode before handling 
outstanding signals. 

Handling Signals 
                      The kernel handles signals in the context of the process that 
receives them so a process must run to handle signals. There are three 
cases for handling signals: the process exits on receipt of the signal, it 
ignores the signal, or it executes a particular (user) function on receipt of 
the signal. The default action is to call exit in kernel mode, but a process 
can specify special action to take on receipt of certain signals with 
the signal system call. 

old function = signal (signum, function); 
where signum is the signal number the process is specifying the 

action for, function is the address of the (user) function the process 
wants to invoke on receipt of the signal, and the return 
value oldfunction was the value of function in the most recently 
specified call to signal for signum. The process can pass the values 1 or 0 
instead of a function address:  

The process will ignore future occurrences of the signal if the 
parameter value is 1 and exit in the kernel on receipt of the signal if its 
value is 0 (default value). The u-area contains an array of signal-handler 
fields, one for each signal defined in the system. The kernel stores the 
address of the user function in the field that corresponds to the signal 
number. 
 These signals do no imply that anything is wrong with the 
process. The quit signal, however, induces a core dump even though it is 
initiated outside the running process. If a process decides to ignore the 
signal, or receipt of the signal, the signal field is not reset and the process 
will continue ignoring the signal. 

If a process receives a signal that it had previously decided to 
catch, it executes the user specified signal handling function 
immediately when it returns to user mode, after the kernel does the 
following steps: 

1. The kernel accesses the user saved register context, finding the 
program counter and stack pointer that it had saved for return to 
the user process. 

2. It clears the signal handler field in the u area, setting it to the 
default state. 



 

 

3. The kernel creates a new stack frame on the user stack, writing in 
the values of the program counter and stack pointer it had 
retrieved from the user saved register context and allocating new 
space, if necessary. The user stack looks as if the process had called 
user-level function (the signal catcher) at the point where it had 
made the system call or where the kernel had interrupted it (before 
recognition of the signal). 

4. The kernel changes the user saved register context: It resets the 
value for the program counter to the address of the signal catcher 
function and sets the value for the stack pointer to account for the 
growth of the user stack. 
An important thing to note about signals is that, if a process 

invokes the signal system call with "death of child" parameter, the kernel 
sends the calling process a "death of child" signal if it has child processes 
in the zombie state. The reason behind this is discussed later. 

Process Groups 
The system has to identify processes by "groups" in some cases, for 

instance, a signal might relate to all the processes which are ancestors of 
the login shell. The kernel uses the process group ID to identify groups of 
related processes that should receive a common signal for certain events. 
It saves the group ID in the process table. 

The setpgrp system call initializes the process group number of a 
process and sets it equal to the value of its process ID. 

grp = setpgrp(); 

where grp is the new process group number. A child retains the process 
group number of its parent during fork. 

Sending Signals from Processes 
Processes use the kill system call to send signals. 

kill (pid, signum); 

where pid identifies the set of processes to receive the signal, 
and signum is the signal number being sent. The following list shows 
the correspondence between values of pid and sets of processes. 

• If pid is a positive integer, the kernel sends the signal to the process 
with process ID pid. 

• If pid is 0, the kernel sends the signal to all processes in the sender's 
process group. 



 

 

• If pid is -1, the kernel sends the signal to all processes whose real 
user ID equals the effective user ID of the sender. If the sending 
process has effective user ID of superuser, the kernel sends the 
signal to all processes except processes 0 and 1. 

• If pid is a negative integer but not -1, the kernel sends the signal to 
all processes in the process group equal to the absolute value 
of pid. 

In all cases, if the sending process does not have effective user ID of 
superuser, or its real or effective user ID do not match the real or 
effective user ID of the receiving process, kill fails. 

 

Process Termination 
Processes on the UNIX system exit by executing the exit system 

call. When a process exits, it enters the zombie state, relinquishes all of 
its resources, and dismantles its context except for its process table entry. 

exit (status); 

where status is the exit code returned to the parent. The process 
may call exit explicitly, but the startup routine in C calls exit after 
the main function returns. The kernel may call exit on receiving an 
uncaught signal. In such cases, the value of status is the signal number. 
In the "write accounting record" step in the above algorithm, it saves its 
exit code and user and kernel execution time of itself and its descendants 
in the process table entry. It also writes accounting data to a global 
accounting file, containing various run time statistics such as user ID, 
memory and CPU usage and amount of I/O for the process. The kernel 
never schedules a zombie process to execute. 

Awaiting Process Termination 
A process can synchronize its execution with the termination of a 

child process by executing the wait system call. 

pid = wait (stat_addr); 

where pid is the process ID of the zombie child, and stat_addr is 
the address in user space of an integer that will contain the exit status 
code of the child. 

The kernel adds the accumulated time the child process executed 
in user and in the kernel mode to the appropriate fields in the parent 
process u-area. 

If the signal is "death of child", the process responds differently: 



 

 

• In the default case, it will wake up from its sleep in wait, 
and sleep invokes algorithm issig to check for 
signals. issig recognizes the special case of "death of child" signals 
and returns "false". Consequently, the kernel does not "long jump" 
from sleep, but returns wait. The kernel will restart the wait loop, 
find a zombie child -- at least one is guaranteed to exist, release the 
child's process table slot, and return from the wait system call. 

• If the process catches "death of child" signals, the kernel arranges 
to call the user signal-handler routine, as it does for other signals. 

• If the process ignores "death of child" signals, the kernel restarts 
the wait loop, frees the process table slots of zombie children, and 
searches for more children. 

Invoking Other Programs 
The exec system call overlays the address space of a process with 

the contents of an executable file. 

execve (filename, argv, envp) 

where filename is name of the file being invoked, argv is a pointer 
to array of character pointers which are arguments to the program in the 
executable file, and envp is a pointer to array of character pointers which 
are the environment of the executed program. There are several library 
functions that call exec, like execl, execv, execle, and so on.  

All call execve eventually. The character strings in the envp array 
are of the form, "name=value".  
The kernel examines the file header to determine the layout of the 
executable file. The logical format of an executable file as it exists in the 
file system is shown in the diagram below: 

![Logical layout of executable file](Diagrams/Screen Shot 2017-06-22 at 
10.02.55 AM.png) 

It consists of four parts: 

1. The primary header describes how many sections are in the file, 
the start address for process execution, and the magic number, 
which gives the type of the executable file. 

2. Section headers describe each section in the file, giving the section 
size, the virtual addresses the section should occupy when 
running in the system, and other information. 



 

 

3. The sections contain the "data", such as text, that are initially 
loaded in the process address space. 

4. Miscellaneous sections may contain symbol tables and other data, 
useful for debugging. 

The magic number is a short integer, which identifies the file as a load 
module and enables the kernel to distinguish run-time characteristics 
about it. Magic number plays an important role in paging systems . 

The kernel has to copy the parameters passed to exec to a holding 
space as the address space is going to be overlaid. It usually copies the 
parameter into kernel memory. The use of kernel stack for saving the 
copied parameters is also common, but there is a limit to the kernel stack 
and the parameters can be of arbitrary length.  

The kernel usually copies them to a space which is accessible 
faster. Hence, use of primary memory is preferable that secondary 
memory (swap device). 

The kernel allocates and attaches regions for text and data, loading 
the contents of the executable file into main memory 
(algorithms allocreg, attachreg, and loadreg). The data region of a process 
is (initially) divided into two parts: data initialized at compile time and 
data not initialized at compile time ("bss").  

The initial allocation and attachment of the data region is for the 
initialized data. The kernel then increases the size of the data region is 
for the initialized data. The kernel then increases the size of the data 
region using algorithm growreg for the "bss" data, and initializes the 
value of the memory to 0.  

Finally, it allocates a region for the process stack, attaches it to the 
process, and allocates memory to store exec parameters. If the kernel has 
saved the exec parameters in memory pages, it can use those pages for 
the stack. Otherwise, it copies the exec parameters to the user stack. 

The kernel takes special action for setuid programs and for process 
tracing . After exec, the process ID doesn't change. Only user level 
context changes. The reason why text and data regions are separate, is 
primarily to protect the text region. The kernel can use hardware 
protection for the text region and any attempt to overwrite the text 
region, results into a protection fault that typically results in termination 
of the process.  

If the text region is protected, it does not change from the time 
kernel loaded it into the memory. Therefore, several processes can share 
the text region, saving memory. Thus, when the kernel allocates a text 



 

 

region for a process in exec, it checks if the executable file allows its text 
to be shared, indicated by its magic number.  
 

Of course, the kernel frees the regions only if no processes currently 
use it. The scenario for exec is slightly more complicated if a process execs 
itself. If a user types sh script the shell forks and the child process execs 
the shell and executes the commands in the file "script".  

If a process *execIs itself and allows sharing of its text region, the 
kernel must avoid deadlocks over the inode and region locks. That is, 
the kernel cannot lock the "old" text region, hold the lock, and then 
attempt to lock the "new" text region, because the old and new regions 
are one region. Instead, the kernel simply leaves the old text region 
attached to the process, since it will be reused anyway. 

The User ID of a Process 
                  There are two user ID associated with a process, the real user 
ID and the effective user ID or setuid (set user ID). The real user ID 
identifies the user who is responsible for the running process. The 
effective user ID is used to assign ownership of newly created files, to 
check file access permissions, and to check permission to send signals to 
processes via the kill system call. The kernel allows a process to change 
its effective user ID when it execs a setuid program or when it invokes 
the setuid system call explicitly. 

A setuid program is an executable file that has the setuid bit set in 
its permission mode field. When a process execs a setuid program, the 
kernel sets the effective user ID fields in the process table and u-area to 
the owner ID of the file. To distinguish the two fields, let us call the field 
in the process table the saved user ID. 

setuid (uid); 

where uid is the new user ID, and its result depends on the current 
value of the effective user ID. If the effective user ID of the calling 
process is superuser, the kernel resets the real and effective user ID 
fields in the process table and u-area to uid. If its not the superuser, the 
kernel resets the effective user ID in the u-area to uid if uid has the value 
of the real user ID or if it has the value of the saved user ID.  

Otherwise, the system call returns an error. Generally, a process 
inherits its real and effective user IDs from its parent during 
the fork system call and maintains their values across exec system calls. 



 

 

The login calls setuid system call. login is setuid to root (superuser) and 
therefore runs with effective user ID root. When login is successful, it 
calls setuid system call to set its real and effective user ID to that of the 
user trying to log in (found in fields in the file "/etc/passwd"). 
The mkdir command is a typical setuid program. To allow ordinary users 
to create directories, the mkdir command is a setuid program owned by 
root (superuser permission). 

Changing the Size of a Process 
A process can increase or decrease the size of its data region by 

using the brk system call. 

brk (endds); 

where endds becomes the value of the highest virtual address of 
the data region of the process (called its break value). Alternatively, a 
user can call 

oldendds = sbrk(increment); 

where increment changes the current break value by the specified 
number of bytes, and oldendds is the break value before the call. sbrk is 
a C library routine that calls brk. The kernel checks that the new process 
size is less than the system maximum and that the new data region does 
not overlap previously assigned virtual address space.  
When the user stack overflows, the kernel extends it using brk. 

The Shell 
The shell is a very complex program. But this section will describe 

the shell, apart from the complex parts. The main loop of the shell looks 
like this: 
// read command line until "end of file" 
while (read(stdin, buffer, numchars)) 
{ 
 // parse command line 
 if (/* command line contains & */) 
  amper = 1; 
 else 
  amper = 0; 
 // for commands not part of the shell command language 
 if (fork() == 0) 
 { 



 

 

  // redirection of IO? 
  if (/* redirect output */) 
  { 
   fd = creat(newfile, fmask); 
   close(stdout); 
   dup(fd); 
   close(fd); 
   // stdout is now redirected 
  } 
  if (/* piping *) 
  { 
   pipe (fildes); 
   if (fork() == 0) 
   { 
    // first component of command line 
    close(stdout); 
    dup(fildes[1]); 
    close(fildes[1]); 
    close(fildes[0]); 
    // stdout now goes to pipe 
    // child process does command 
    execlp(command1, command1, 0); 
   } 
   // 2nd command component of command line 
   close(stdin); 
   dup(fildes[0]); 
   close(fildes[0]); 
   close(fildes[1]); 
   // standard input now comes from pipe 
  } 
  execve(command2, command2, 0); 
 } 
 // parent continues over here... 
 // waits for child to exit if required 
 if (amper == 0) 
  retid = wait(&status); 
} 
The standard input and output file descriptors for the login shell are 
usually the terminal on which the user logged in. If the shell recognizes 
the input string as a built-in command (for example, cd, for, while and 



 

 

others), it executes the command internally without creating new 
processes; otherwise, it assumes the command is the name of an 
executable file. 
If a & character is postfixed to the command, the shell runs the execed 
process asynchronously. Otherwise, it will wait for the execed process to 
finish execution. 
When input or output is redirected using the >, <, or >2 characters, the 
shell redirects the output by closing the stdin, stdout, whichever 
applicable, or both and then creating new file(s) and using dup for actual 
redirection. (In the code above, the redirection of stdout is shown, same 
method is used for stdin and stderr.) 
The code shows how the shell could handle a command line with a 
single pipe, as in 
ls -l | wc 
This will result in the output of ls -l to be passed to wc as its input. For 
doing this, the shell pipes the output of ls to the input of wc. Here, the 
child of shell creates another child (grandchild of the shell). 
The shell keeps looping and reading the commands. 

System Boot and the Init Process 
But procedures vary according to machine types, but the goal is to 

copy the operating system into machine memory and start executing it. 
This is done in a series of steps and hence called as the "bootstrap". On 
UNIX machines, the bootstrap finally reads the boot block (block 0) of a 
disk and loads it into memory. The program in the boot block loads the 
kernel from the file system (for example, from the file "/unix"). Then the 
boot block program transfers control to the start address of the kernel 
and the kernel starts running. The algorithm start is given below: 
*/ 
 
{ 
 fd = open("/etc/inittab", O_RDONLY); 
 while (line_read(fd, buffer)) 
 { 
  // read every line of file 
  if (invoked state != buffer state) 
   continue;  // loop back to while 
  // state matched 
  if (fork() == 0) 



 

 

  { 
   execl("process specified in buffer"); 
   exit(); 
  } 
  // init process does not wait 
  // loop back to while 
 } 
  
 while ((id = wait((int *) 0)) != -1) 
  

init reads the file "/etc/inittab" for instructions about which 
processes to spawn. The file "/etc/inittab" contains lines that contain an 
"id", a state identifier (single user, multi-user, etc), an "action" and a 
program specification. This is shown below: 
 

init reads the file and, if the state in which it was invoked matches 
the state identifier of a line, creates a process that executes the given 
program specification. Meanwhile, init executes the wait system call, 
monitoring the death of its child processes and the death of processes 
"orphaned" by exiting parents. 

Processes in the UNIX system are either user processes, daemon 
processes, or kernel processes. Most processes are user processes, 
associated with users at a terminal. Daemon processes are not associated 
with any users but do system-wide functions, such as administration 
and control of networks, execution of time-dependent activities, and so 
on. They are like user processes in that they run at user mode and make 
system calls to access system services. 

 

Process Scheduling and time 
On a time sharing system, the kernel allocates CPU to a process for 

a period of time called the time slice or time quantum. After the time 
quantum expires, it preempts the process and schedules another one. 
The scheduler in UNIX uses relative time of execution as a parameter to 
determine which process to schedule next.  

Every process has a priority associated with it. Priority is also a 
parameter in deciding which process to schedule next. The kernel 
recalculates the priority of the running process when it comes to user 
mode from kernel mode, and it periodically re-adjusts the priority of 
every "ready-to-run" process in user mode. 



 

 

Process Scheduling 

The scheduler on the UNIX system belongs to the general class of 
operating system schedulers knows as round robin with multilevel 
feedback. That means, when kernel schedules a process and the time 
quantum expires, it preempts the process and adds it to one of the 
several priority queues. 

 
The algorithm schedule_process is given below: 

/*  Algorithm: schedule_process 
 *  Input: none 
 *  Output: none 
 */ 
 
{ 
 while (no process picked to execute) 
 { 
  for (every process on run queue) 
   pick highest priority process that is loaded in 
memory; 
  if (no process eligible to execute) 
   idle the machine; 
   // interrupt takes machine out of idle state 
 } 
 remove chosen process from run queue; 
 switch context to that of chosen process, resume its execution; 
} 

This algorithm is executed at the conclusion of a context switch. It 
selects the highest priority process from the states "ready to run, loaded 
in memory" and "preempted". If several processes have the same 
priority, it schedules the one which is "ready to run" for a long time. 

Scheduling Parameters 
Each process table entry contains a priority field. The priority is a 

function of recent CPU usage, where the priority is lower if a process has 
recently used the CPU. The range of priorities can be partitioned in two 
classes: user priorities and kernel priorities. It is shown in the diagram 
below: 



 

 

 
Each priority has a queue of processes logically associated with it. 

The processes with user-level priorities were preempted on their return 
from the kernel to user mode, and processes with kernel-level priorities 
achieved them in the sleep algorithm.  

The kernel calculates process priorities in these process states: 

• It assigns priority to a process about to go to sleep. This priority 
solely depends on the reason for the sleep. Processes that sleep in 
lower-level algorithms tend to cause more system bottlenecks the 
longer they are inactive; hence they receive a higher priority than 
process that would cause fewer system bottlenecks. For instance, a 
process sleeping and waiting for the completion of disk I/O has a 
higher priority than a process waiting for a free buffer. Because the 
first process already has a buffer and it is possible that after the 
completion of I/O, it will release the buffer and other resources, 
resulting into more resource availability for the system. 

• The kernel adjusts the priority of a process that returns from 
kernel mode to user mode. The priority must be lowered to a user 
level priority. The kernel penalizes the executing process in 
fairness to other processes, since it had just used valuable kernel 
resources. 
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• The clock handler adjusts the priorities of all processes in user 
mode at 1 second intervals (on System V) and causes the kernel to 
go through the scheduling algorithm to prevent a process from 
monopolizing use of the CPU. 

System Calls for Time 
There are several time-related system calls, stime, time, times, 

and alarm. The first two deal with global system time, and the latter two 
deal with time for individual processes. stime allows the superuser to set 
a global kernel variable to a value that gives the current time: 

stime(pvalue); 

where pvalue points to a long integer that gives the time as 
measured in seconds from midnight before (00:00:00) January 1, 1970, 
GMT. The clock interrupt handler increments the kernel variable once a 
second. time retrieves the time as set by stime. 

time(tloc); 

where tloc points to a location in the user process for the return 
value. time returns this value from the system call, too. 
times retrieves the cumulative times that the calling process spent 
executing in user mode and kernel mode and the cumulative times that 
all zombie children had executed in user mode and kernel mode. 

Clock 
The functions of the clock interrupt handler are to: 

• restart the clock 

• schedule invocation of internal kernel functions based on internal 
timers 

• provide execution profiling capability for the kernel and for user 
processes 

• gather system and process accounting statistics, 

• keep track of time 

• send alarm signals to processes on request 

• periodically wake up the swapper process 

• control process scheduling 
Some operations are done every clock interrupt, whereas others are 
done after several clock ticks. The clock handler runs with processor 
execution level set high.  



 

 

Keeping Time 
The kernel increments a timer variable at every clock interrupt, keeping 
time in clock ticks from the time the system was booted. The kernel 
saves the process start time in its u-area when a process is created in 
the fork system call, and it subtracts that value from the current time 
when the process exits, giving the real execution time of a process. 
Another timer variable, set by the stime system call, is updated once a 
second, keeps track of calendar time. 
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